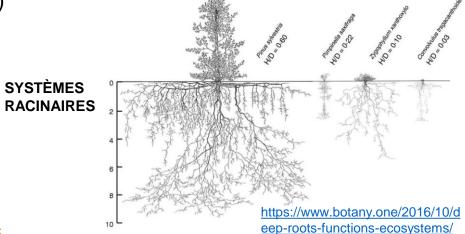


RETOUR D'EXPÉRIENCE D'APPLICATION DES TECHNIQUES DE PHYTOSCREENING ET DENDROCHIMIE – PARTIE 1

Sébastien Kaskassian, Tauw France

07 novembre 2019

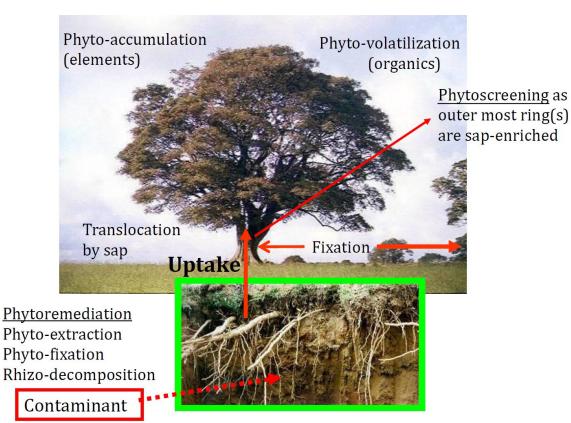
Le Phytoscreening : les principes


Restitue une image de la pollution du sous-sol

Les racines prélèvent les polluants

 dans les sols de ZNS via le système d'ancrage horizontal (rayon d'influence, matrice intégratrice)

• dans la **nappe** via le système de pompage d'eau (0,5 à 2m,


voire >10m)

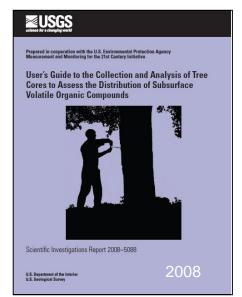
Les polluants

- Très bon retour d'expérience :
 métaux (sol, nappe) et COV (sol, nappe, gaz des sols)
- Faible retour d'expérience : HAP, HC > C12, PCB, dioxines...

TRANSLOCATION DES POLLUANTS PAR LA SÈVE

Adapté de ADEME, 2015

Phytoscreening: les applications


Contextes particulièrement favorables

- Accès contraint des machines de forage ou liés à la sécurité : zone urbaine, réseaux enterrés, zone ATEX, zone inondable ...
- Grands sites, multi-sources et multi-pollutions, activités historiques mal connues, besoin d'orienter les diagnostics traditionnels

Echantillonnage & analyses : guide PIT, ADEME (2015)

- Les protocoles dépendent des polluants recherchés : métaux, COHV, BTEX, HAP et alcanes, PCB-dioxines
- Matériel léger, manuel, sans besoin de forage de sols
- Interventions « furtives » et rapides (20 à 40 arbres / jour)
- Points d'attention
 - Saisonnalité, météorologie
 - Quels arbres ? Quel maillage ?
 - Échantillonnage?
 - Pédologie / aquifère
- Assurance qualité

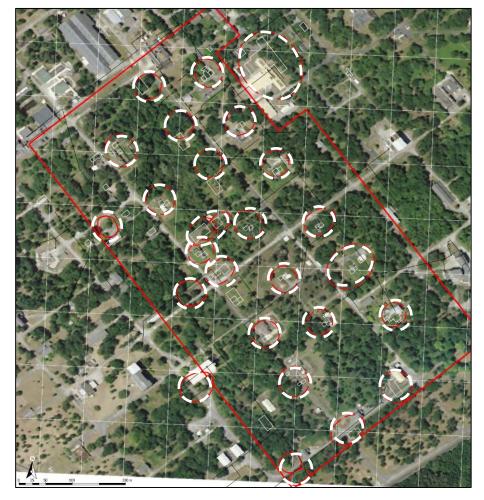
ECHANTILLONNAGE DES ARBRES POUR LES COV

Tauw France, 2016

Cas d'étude : grand site multi-sources (1)

Stratégie pour délimiter les sources/panaches en nappe, hiérarchiser les impacts

Site


- TCE (dégraissant) utilisé/stocké (1940-1990) dans +25 zones sur +30 hectares
- Fortes contraintes de sécurité (ATEX, réseaux, site Seveso)
- Nappe superficielle (2-4m prof.),
 concentrations en solvants chlorés ~ 10 à 140 000 μg/L
- Forte densité d'arbres

Objectifs / stratégie

- Délimiter les panaches de manière efficace
- Hiérarchiser les impacts
- Stratégie proposée
 - Démonstration dans une zone où le panache est connu
 - Optimisation et application du phytoscreening
 à l'échelle de la zone d'étude

Tauw Sébastien Kaskassian

SITE D'ÉTUDE - SOURCES POTENTIELLES

Limites rouges: périmètre d'étude

Ronds blancs: zones d'utilisation / stockage TCE

Cas d'étude : grand site multi-sources (2)

Pilote de démonstration de la pertinence du phytoscreening

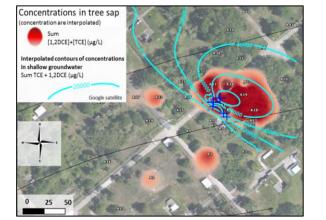
Echantillonnage Phytoscreening (avril 2016)

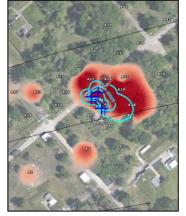
- 2 jours, 39 arbres (chênes)
- Forte réponse à l'angle NE du bâtiment

Comparaison des résultats en nappe

- Campagne Janvier 2016 (14 piézos.)
- Campagne Juillet 2016 <u>après ajout de 3 piézos (17 piézos.)</u>
 - Panaches Nappe vs. Arbres très similaires

Définition du maillage optimal


- Maillage phytoscreening à l'échelle du site ~ 20m
- Délimiter les panaches ET discriminer les origines



RÉSULTATS PHYTOSCREENING - DÉMO.

COMPARAISON DES PANACHES : ARBRES vs. NAPPE

anache nappe = données Janv.-16 (14 Pz)

données Juill.-16 (17Pz)

Cas d'étude : grand site multi-sources (3)

SITE D'ÉTUDE - SOURCES POTENTIELLES

Optimiser le diagnostic phytoscreening sur la zone d'étude

Programme initial

- Maille 20x20m (démo.), 21 sources à investiguer (EHD)
- Soit 440 arbres (pas régulier) + 38 piézomètres (tous)

Maillage optimisé

- Revue documentaire et visite sur site
- 24 zones accessibles (réalité)
- Programme final : 185 arbres (chênes, peupliers) et 25 piézomètres

Résultats

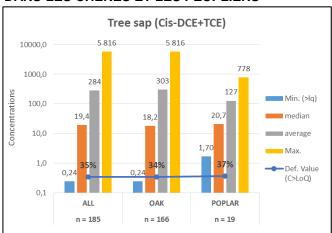
- 3 semaines d'intervention en septembre
- Arbres : blancs et témoins OK
- Arbres : TCE et Cis-DCE détectés
- Nappe: TCE, Cis-DCE et CV

Cas d'étude : grand site multi-sources (4)

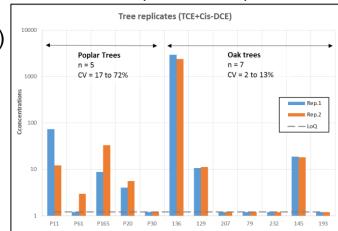
Variations inter-espèces et variations temporelles

Chênes vs. Peupliers

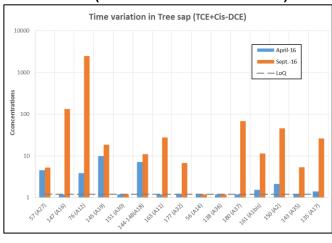
Pas de différence significative entre essence

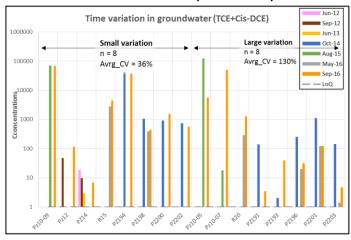

Réplicas

- Ecarts plus significatifs pour les Peupliers
- Peupliers échantillonnés sont jeunes


Variations temporelles

- Arbres : conc. plus élevées en Sept. (facteur 2 à >10)
- → Sols secs = meilleur transfert gazeux
- Nappe : variations temporelles (facteur > 5) sur la période 2012 - 2016
- → Peut expliquer la variation dans les arbres


COMPARAISON STATISTIQUE DES TENEURS DANS LES CHÊNES ET LES PEUPLIERS

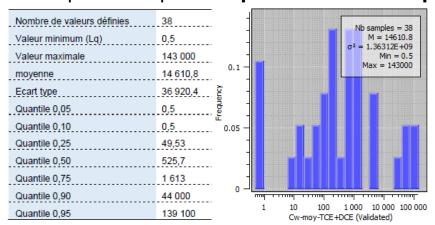

VARIABILITÉ DES TENEURS DANS LES CHÊNES ET LES PEUPLIERS (SUR RÉPLICAS)

VARIATION TEMPORELLE DES TENEURS DANS LES ARBRES (AVRIL VS. SEPTEMBRE 2016)

VARIATION TEMPORELLE DES TENEURS DANS LA NAPPE (2012 - 2016)

Sébastien Kaskassian

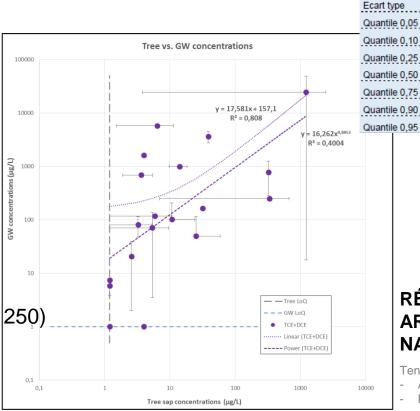
Concentrations dans les arbres


Valeur maximale

Cas d'étude : grand site multi-sources (5)

Arbres vs. Nappe : données complémentaires et corrélées

Concentrations en nappe


Répartition spatiale : près des sources potentielles

Corrélations Arbres vs. Nappe

- 19 couples
- 2 régressions retenues
- générer des cartes de pollution de la nappe en utilisant toutes les données (Arbres + Nappe = 250)

Répartition spatiale : maillage régulier sur le site Nombre de valeurs définies Valeur minimum (Lq) 0,0

RÉGRESSIONS ARBRES vs. **NAPPE**

Teneurs movennes & écarts-types :

Arbres : réplicas & variation temporelle

5 816,0

98,3

7,36

460.5

0.1

Ct-sept16-TCE+DCE (Validated

Nappe : variation temporelle

Sébastien Kaskassian

M = 98.2809

 $\sigma^2 = 263188$

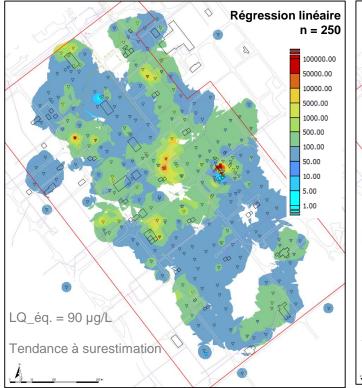
Max = 5816.02

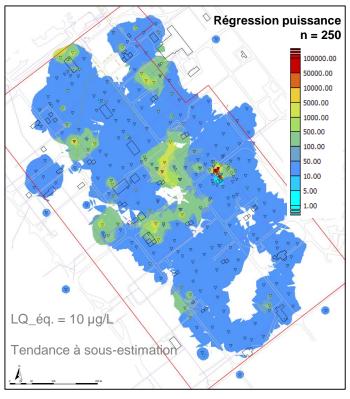
Cas d'étude : grand site multi-sources (6)

Cartographies des panaches et hiérarchisation des impacts

Cartographies

- Teneurs équivalentes dans la nappe
 - C_nappe mesurées
 - C_nappe estimées avec régressions f°(C_arbre)


Hiérarchisation des impacts


- Carte combinée « Arbres & Nappe »
- Hiérarchisation des zones
- Priorisation de la stratégie à venir

HIÉRARCHISATION DES IMPACTS ET DE L'INCERTITUDE

-		
Impact Level	Uncertainty level	Source zones
STRONG IMPACT	Sure	6 zones
	Uncertain	2 zones
MEDIUM IMPACT	Sure	4 zones
	Uncertain	7 zones
NO IMPACT	Sure	3 zones
	Uncertain	4 zones

DÉLIMITATION DES PANACHES DE SOLVANTS CHLORÉS

Sébastien Kaskassian

Conclusions et retours d'expérience

Objectifs pour une étude phytoscreening

- Explorer les zones méconnues : lacune de l'EHD, faible densité d'ouvrages
- Compléter le maillage d'ouvrages : créer de la continuité
- Orienter les diagnostics successifs

Retours d'expériences opérationnels

- Diagnostic phytoscreening moins cher (-80%) et plus rapide (<1 mois vs. 12 mois) qu'avec les méthodes conventionnelles
- Peu de contraintes d'accès ou de sécurité
- Adapté à la délimitation des panaches de COV en nappe (LQ ~ 5 à 50 μg/L)
- Information collectée similaire aux méthodes de screening Gaz des Sols ... mais plus rapide, plus intégratrice et sans les contraintes de foration
- Responsabilité du bureau d'étude = dimensionnement du diagnostic (maillage, espèces d'arbre, échantillonnage, analyse, comparaison, interprétation)

